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Abstract This review focuses on osteoclast ontogeny and function, emphasizing three aspects. We describe how 
a combination of laboratory models available to study the cell plus examination of the osteopetroses, a family of 
sclerotic diseases of the skeleton, have yielded major insights into osteoclast ontogeny and function. We proceed to 
describe the cell and molecular machinery enabling osteoclasts to resorb bone. The final, and most speculative, aspect 
of the review addresses possible mechanisms by which the osteoclast assumes its characteristic morphology, that of a 
polarized cell on bone. Since little direct information has been forthcoming as to how the osteoclast polarizes, we draw 
on other polarized cells. In particular, we examine the role of microtubules and members of the small GTPase family, the 
latter mediating polarized targeting of intracellular vesicles. In the case of the osteoclast, such vesicles probably 
represent the origin of the highly convoluted ruffled membrane, the cell’s characteristic bone resorptive 
organ. Q 1995 Wiley-Liss, Inc. 
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The osteoclast is a physiological polykaryon 
and a member of the monocytelmacrophage fam- 
ily [Udagawa et al., 1990; Suda et al., 19921. 
While it is the principal, if not exclusive, resorp- 
tive cell of bone, the mechanisms by which the 
osteoclast degrades skeletal matrix have begun 
to clarify only recently. The purpose of this 
review is to  summarize current knowledge con- 
cerning the ontogeny and mode of action of the 
osteoclast. In the first section we examine the 
cellular lineage of the osteoclast, with emphasis 
on the signals which control production of these 
polykaryons. A second subject concerns the 
mechanisms by which osteoclasts resorb bone, 
again emphasizing the process at a molecular 
level. In the final section we discuss the possible 
pathways by which the osteoclast assumes its 
characteristic morphology, that of a polarized 
cell on bone. In this latter section, since there is 
little direct evidence relating to the osteoclast, 
we have drawn on recent findings as they apply 
to  other polarized cells. In particular, we exam- 
ine the role of both microtubules and members 
of the small GTPase family, the latter known to 
mediate polarized targeting of intracellular 
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vesicles. In the case of the osteoclast, such 
vesicles probably represent the origin of the 
highly convoluted ruffled membrane, the charac- 
teristic feature of a polarized, fully functional 
bone resorbing cell. 

New insights into osteoclast physiology derive 
largely from two sources. First, the disease osteo- 
petrosis has provided a wealth of information 
regarding critical events in osteoclastogenesis 
and skeletal degradation. This rare family of 
disorders is characterized by failure of osteo- 
clasts to resorb mineralized tissue, which there- 
fore progressively accumulates within the skel- 
eton. Thus, the skeletons of osteopetrotic 
animals and patients are sclerotic, with loss of 
distinction between cortex and trabeculum. 

The osteopetroses fall into two general catego- 
ries. The first is characterized by a paucity of 
osteoclasts. Because accessory cells, such as os- 
teoblasts [Burger et al., 19841 or  stromal cells 
[Udagawa et  al., 19901, produce humoral 
[Tanaka et al., 1993al and membrane-residing 
[Takahashi et al., 19881 factors critical to osteo- 
clastogenesis, the molecular defect in osteoclast- 
deficient osteopetrosis may lie not in the osteo- 
clast precursor per se but in cells providing 
factors necessary to  promote its differentiation. 
Such a lesion exists in the oplop osteopetrotic 
mouse [Wiktor-Jedrzejczak et al., 19821. This 
animal bears a homozygous mutation in the 
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M-CSF (CSF-1) gene moshidaet al., 19901 whose 
product, macrophage specific growth factor, is 
necessary for osteoclastogenesis. As expected, 
administration of M-CSF to the oplop mouse 
cures its disease [Felix et al., 1990; Kodama et 
al., 19911. 

In contrast to  the osteoclast-deficient forms of 
osteopetrosis, those in which the cell is abun- 
dant are due not to abnormalities of osteoclast 
precursor differentiation but to failure of the 
cell to express an essential component of the 
resorptive apparatus. Osteoclast-abundant osteo- 
petrosis is probably the most common form of 
the human disease [Teitelbaum et al., 19811 and 
is also seen in rodents such as the c-src -1- 
mouse [Soriano et al., 19911, a topic discussed 
later in this review. Predictably, this group of 
osteopetroses is curable by transplantation of 
normal osteoclast precursors derived from mar- 
row, liver, or spleen [Coccia et al., 1980; Walker, 
19751. 

The second event fostering major insights into 
osteoclast biology was the development of tech- 
niques whereby osteoclasts can be isolated or 
generated and maintained in culture. Such cells 
have been derived from chickens [Zambonin- 
Zallone et al., 19821, rodents [Amett and Demp- 
ster, 19871, and man [Chambers et al., 19851, 
and each model has its advantages and disadvan- 
tages. Large numbers of avian osteoclasts can be 
isolated or produced by culture of uniform bone 
marrow-derived monocytic precursors [Alvarez 
et al., 19911. Because of purity and abundance, 
these polykaryons are suitable for biochemical 
and/or cell biological experiments. In particular, 
the precursors respond to osteoclastogenic ste- 
roid hormones, which play a role in their differ- 
entiation [Suda et al., 19921. On the other hand, 
bona fide avian osteoclasts and those derived in 
culture fail to express the calcitonin receptor 
[Arnett and Dempster, 19871, a hallmark of 
their mammalian counterpart [Nicholson et al., 
1986; Hattersly and Chambers, 19891. Further- 
more, chicken hematopoietic growth factors are 
largely unavailable, thereby limiting experi- 
ments aimed at delineating cytokine-mediated 
mechanisms regulating osteoclastogenesis. 

In contrast to the chicken, accessibility of 
recombinant murine hematopoietic cytokines fa- 
cilitates performance, in the mouse, of critical 
experiments exploring the role of these mol- 
ecules in osteoclastogenesis. Furthermore, gene 
targeting technology allows for direct, in vivo 
testing of hypotheses derived from in vitro ex- 

perimentation. On the other hand, only limited 
numbers of mouse osteoclasts can be isolated or 
generated [Udagawa et al., 19901. Moreover, 
murine osteoclast generation requires coculture 
of macrophages with either osteoblasts [Burger 
et al., 19841 or stromal cells [Udagawa et al., 
19901, thus precluding a high degree of osteo- 
clast purity. This fact, and the relatively small 
number of cells generated, makes biochemical 
experimentation more difficult than with the 
avian counterpart. 

Finally, human osteoclasts can be isolated 
from giant cell tumors of bone (osteoclastomas), 
and important information has been forthcom- 
ing from these cells [Chambers et al., 1985; 
Ohsaki et al., 19921. Such material is, however, 
unavailable to most laboratories, and, as yet, 
human polykaryons capable of osteoclastic bone 
resorption have not yet been generated in vitro. 

Using these tools to  unravel the resorptive 
process has led to a reasonable model by which 
the osteoclast degrades bone. Reflecting the de- 
fects in osteopetrosis, physiological resorption 
may be regulated by differentiation of osteoclast 
precursor cells or by governing the activity of 
mature polykaryons. In fact, stimulation of bone 
resorption appears to be exerted largely through 
regulation of osteoclast precursor differentia- 
tion. A number of agents are known to modulate 
differentiation of osteoclast precursors. These 
belong to the cytokine family of secreted factors 
and include a variety of interleukins as well as 
tumor necrosis factor (TNF) or lymphotoxin 
[Mundy, 19921. Recent studies have clarified the 
mechanisms by which cytokine-mediated in- 
creases in osteoclastic bone resorption occur. 
IL-1, IL-6, IL-11, and TNF stimulate bone re- 
sorption indirectly by increasing proliferation 
and differentiation of osteoclast precursors 
[Roodman, 1992, Lerner and Ohlin, 19931. These 
molecules crossregulate their production, as 
demonstrated by the fact that TNF amplifies 
IL-1 and parathyroid hormone-induced secre- 
tion of IL-6 [Passeri et al., 19941. Recent publica- 
tion suggests that IL-1 and TNF may act on 
early steps in the differentiation pathway, while 
IL-6 may be active later [Kitazawa et al., 19941. 

IL-6 and IL-11 belong to a subfamily of cyto- 
kines in which signalling is mediated by recep- 
tors sharing a common subunit, gp130. Specific- 
ity is achieved by binding of each protein to 
separate subunits, which associate with gp130 
to form the active signalling complex Bin  et al., 
19931. In the case of IL-6, an 80 kDa, soluble 
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form of the IL-6 binding subunit stimulates 
formation of osteoclasts in vitro [Tamura et al., 
19931. Thus, increased osteoclastogenesis by IL-6 
and IL-11 may arise from a common intracellu- 
lar signal. 

Steroid hormones, particularly 1,25 dihy- 
droxyvitamin D3 (1,25(OH),D3) [Udagawa et al., 
1990; Perkins and Teitelbaum, 19911 and prob- 
ably retinoic acid [Hough et al., 19881, are also 
critical for the maturation of precursor cells. 
Thus, it is not surprising that vitamin D recep- 
tors are present in osteoclast precursors and lost 
upon formation of the terminally differentiated 
polykaryon [Merke et al., 19861. Additionally, 
1,25(OH),D3 upregulates the estrogen receptor 
in human bone marrow stromal cells [Bellido et 
al., 19931. The ability of specific inhibitors of 
IL-1 and TNF to reverse the consequences of 
estrogen withdrawal [Kitazawa et al., 19941 indi- 
cates that at least part of the effects of this 
steroid on osteoclast function are mediated via 
these cytokines. 

Finally, mature osteoclasts contain estrogen 
receptors [Oursler et al., 19911, and treatment 
with the sex steroid stimulates lysosomal en- 
zyme secretion [Oursler et al., 19941. Given the 
above, and the recent demonstration that estro- 
gen regulates expression of IL-1 and IL-6 in vivo 
[Jilka et al., 1992; Kimble et al., 1994; Pacifici et 
al., 1991; Ralston, 19941 and in vitro [Pioli et al., 
1992; Girasole et al., 1992; Passeri et al., 19931, 
steroid hormones probably directly and indi- 
rectly modulate osteoclast formation. 

Osteoclast precursor differentiation is charac- 
terized by acquisition of matrix adherence, a 
step apparently essential for physiological multi- 
nucleation. The entire repertoire of molecules 
responsible for osteoclast-bone recognition is 
probably not yet known, but the integrins avp3 
and avp5 appear to be important. For example an 
anti-avp3 antibody blunts the bone binding and 
resorbing capacity of osteoclasts [Chambers et 
al., 1986; Ross et al., 19931. Furthermore, expres- 
sion of this integrin heterodimer by osteoclast 
precursors is enhanced by the resorptive ste- 
roids 1,25(OH),D3 and retinoic acid, an event 
mediated by direct transactivation of the p3 gene 
[Mimura et al., 1994; Chiba et al., 19931. 

While avp3 function is pivotal to the resorptive 
process, it may not be the molecule which an- 
chors the osteoclast directly to bone. For ex- 
ample, there is controversy [Teti et al., 1991; 
Lakkakorpi et al., 19911 as to whether the het- 
erodimer localizes to the attachment region of 

the cell (the “sealing zone”), and we find the 
ability of avian osteoclast precursors to bind 
matrix precedes appearance of a&,. The closely 
related integrin avo5, on the other hand, is ex- 
pressed in the earliest identifiable adherent avian 
osteoclast precursors [Sago et al., 19931. This 
heterodimer, which, like avp3, recognizes the 
bone matrix protein osteopontin [J. Smith, per- 
sonal communication], disappears as the cells 
differentiate under the influence of retinoic acid 
[Sago et al., 19931. Thus, avp5 may be the initial 
homing receptor by which osteoclast precursors 
bind bone, only to be replaced by other mol- 
ecules once matrix-associated differentiation is 
under way. 

The principal steps by which osteoclasts, once 
differentiated and attached to bone, resorb ma- 
trix appear largely in hand. The initial event in 
this process, acidification of the isolated extracel- 
lular resorptive microenvironment, is mediated 
by a vacuolar H+-ATPase in the ruffled mem- 
brane of the polarized cell. The structure and 
functional activity of this multienzyme complex 
is very similar, if not identical, to  the analogous 
proton pump in the intercalated cell of the kid- 
ney [Blair et al., 1989; Mattsson et al., 19941. 
The acidification step is critical, permitting not 
only mineral mobilization, but subsequent deg- 
radation of the organic phase of bone [Blair et 
al., 19861 by acidic proteases such as cathepsin B 
and G [Blair et al., 1993; Sasaki and Ueno- 
Matsuda, 19931. 

One would expect, given the pivotal role extra- 
cellular acidification plays in osteoclastic bone 
resorption, to encounter osteopetrotic pheno- 
types with defects in proton transport. In fact, 
human osteopetrosis is associated with failure 
to express the osteoclast carbonic anhydrase 
isoenzyme [Sly et al., 19831, and recently a scle- 
rotic disease akin to osteopetrosis was found in a 
patient whose osteoclast precursors lack the 
plasma membrane H+-ATPase Bamamoto et 
al., 19931. 

Having documented the osteoclast transports 
protons extracellularly by an electrogenic mech- 
anism raised the issue of maintenance of intra- 
cellular pH. Turning to the paradigm of the 
renal intercalated cell, Teti et al. [19891 found 
that osteoclasts express, on their antiresorptive 
border, an energy-independent Cl-/HCO, ex- 
changer similar to band 3 of the erythrocyte. 
Finally, electroneutrality is preserved by a 
plasma membrane C1- channel, charge coupled 
to the H+-ATPase, resulting in secretion of HCl 
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into the resorptive microenvironment [Blair et 
al., 19911. Although no evidence has been forth- 
coming which links abnormalities in chloride 
transport to impaired bone resorption, this re- 
mains a reasonable hypothesis. 

While much is known about the mechanisms 
by which osteoclasts degrade bone, less is evi- 
dent regarding regulation of these events. For 
example, while their activity is directly blunted 
by calcitonin [Amett and Dempster, 19871 ma- 
ture osteoclasts seem generally unresponsive to 
humoral agonists, such as 1,25(OH)zD3, which 
target to their precursors [Udagawa et al., 1990; 
Merke et al., 19861. 

Being a member of the monocyte/macrophage 
family, osteoclasts share many similarities with 
other polykaryons of this lineage, such as those 
elicited by foreign bodies [Quinn et al., 19911. 
The distinguishing feature of the osteoclast in 
this regard is its polarization. In particular, the 
interface of the cell with bone is highly convo- 
luted and, thus, known as its ruffled membrane. 
This structure, appearing only in bone-bound 
osteoclasts, is rich in H+-ATPase and is the 
cell’s resorptive organ [Blair et al., 19891. Avail- 
able evidence [Baron et al., 1988, 1990; Blair et 
al., 19881 suggests the osteoclast ruffled mem- 
brane forms by polarized insertion of H+- 
ATPase-bearing vesicles into the osteoclast 
plasma membrane (Fig. 1). A major unsolved 
issue regarding osteoclast function pertains to 
the detailed mechanisms by which such vesicles 
target to the bone-residing surface of the cell, 
thereby permitting the initial step in skeletal 
degradation, namely acidification of the resorp- 
tive microenvironment. The fact that polariza- 
tion follows attachment suggests that cell- 
matrix interactions produce a signal resulting in 
vesicular movement. 

Insights gained into the mechanisms of pro- 
tein transport in other systems [Zerial and Sten- 
mark, 1993; Rothman and Orci, 1992; Bauer- 
feind and Huttner, 19931 offer suggestions as to 
how intraosteoclast vesicles target to  and fuse 
with the bone-polarized plasma membrane. 
Movement of proteins from a cell’s center to its 
surface involves generation of specialized 
vesicles, with subsequent targeting to and fu- 
sion with sequential membrane compartments 
[Zerial and Stenmark, 1993; Novick and Brenn- 
wald, 1993; Novick and Garrett, 19941 (Figs. 2, 
3). Budding of a nascent vesicle requires forma- 
tion, on its surface, of a multimer (a coating 
with nonclathrin proteins) which stimulates 

Acidifying 
Vesicles 

0 

Fig. 1. Model for generation of the osteoclast ruffled mem- 
brane. A nonadherent, nonpolarized osteoclast hinds to hone 
leading to the generation of an apical (resorptive) surface. 
Adapting the paradigm of epithelial cells [Fath et al., 1993; 
Rizzolo and Joshi, 19931, microtubules in polarized osteoclasts 
would be expected to orient their + ends toward the cell center 
and - poles facing the plasma membrane. If such is the case, 
the retrograde (+ to -) microtubule motor dynein will aid 
movement of osteoclast vesicles destined for the plasma mem- 
brane along the microtubular network. Vesicles associating 
with osteoclast microtubules may derive directly from the 
transgolgi system and thus accommodate newly synthesized 
proteins [Fath et al., 19931. Alternatively, acidifying structures 
containing critical components of the ruffled membrane, such 
as i ts  proton pump [Baron et al., 19881, may reside in the 
cytoplasm prior to microtubule association. Extensive fusion of 
vesicles with the apical membrane leads to formation of the 
characteristic ruffled appearance. The central issue in osteoclast 
polarization, namely the signalling pathways leading to vesicle 
movement, remains undefined. 

vesicle formation and movement from one mem- 
brane surface to the next [Rothman and Orci, 
1992; Novick and Garett, 19941. Energy for 
these events is derived from hydrolysis of ATP 
and GTP [Ferro-Novick and Novick, 19931, uti- 
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lizing members of several families of nucleotide- 
binding proteins involved in vesicle targeting 
[Zerial and Stenmark, 1993; Novick and Brenn- 
wald, 1993; Novick and Garrett, 1994; von Mol- 
lard et al., 1994a; Zahraoui et al., 19941. 

Antero (- to +) and retrograde (+ to -) 
vesicle movement occurs by association with 
microtubules [Raf€ 1994; Mellman et al., 19931. 
The molecular basis of these events involves 
interactions between the directional motors 
dynein and kinesin with microtubular proteins 
on the one hand [Collins 1994; Scholey and Vale, 
19941 and receptors on the vesicular membrane 
on the other [Fath et al., 1993; Walker and 
Sheetz, 19931. Microtubules maintain composi- 
tion, organization, and position in the cytoplasm 
of many membrane-bound organelles or special- 
ized compartments. They also move materials 
packaged into vesicles from one compartment to 
another [Kelly 1990; Bauerfeind and Huttner, 
1993; Wordeman and Mitchison, 19941. In the 

budding attachment - docking 

Fig. 2. Mechanism for targeting vesicles from one membrane 
to another. Budding of a vesicle from a donor membrane 
requires expenditure of energy in the form of both CTP and ATP. 
The budding process is initiated by association of individual 
members of several groups of proteins, including the small 
CTP-binding family (rabs) [reviewed in von Mollard et al., 
1994al the ADP ribosylation factor family (ARF), and a complex 
of coatamer proteins (COPS) [Takizawa and Malhotra, 19931. 
COPS are structurally related to but functionally separate from 
clathrins. The macromolecular structure so formed is capable of 
migrating to and fusing with an acceptor membrane. N- 
ethylmaleimide sensitive factor (NSF), a soluble molecule which 
contains, at its amino terminus, two binding sites for ATP, 
mediates docking of the vesicle to the acceptor membrane. 
Soluble proteins (SNAPS) which activate NSF bind to receptors 
(SNARES) on vesicles and acceptor membranes [Takizawa and 
Malhotra, 19931, thereby aiding vesicle-membrane attachment. 
Individual members of the rab family dictate trafficking of 

context of this review, relevant examples in- 
clude transport from the endoplasmic reticulum 
to the plasma membrane [van den Bosch et al., 
1990; Gilbert et al., 1991; Saucan and Palade, 
19921. 

The role of the microtubules in polarized ve- 
sicular transport has been documented primar- 
ily for epithelial and neuronal cells [Rodriguez 
and Powell, 1992; Brown and Sabolic, 1993; 
Elferink and Scheller, 1993; Fath et al., 19931 
and hepatocytes [Saucan and Palade, 19941. As 
targeted vesicular transport is necessary for bone 
resorption [Baronet al., 1988; Blair et al., 19891, 
it is likely that microtubules play a role in the 
polarization of osteoclasts. For example, that 
administration of microtubule-dissolving drugs 
in vivo blunts bone resorption [Ohya and Ogura, 
19931 may result from alterations in osteoclast 
cytoskeleton. Likewise, osteoclast microtubular 
structure is altered following treatment with 
calcitonin in vitro [Warshafsky et al., 19851. 

uncoating - fusion 

vesicles to specific membranes [reviewed in von Mollard et al., 
1994bl. In the case of plasma membrane targeting, to date 
rab8, rabl3, and several proteins homologous to rab3 have 
been shown to play a role in this process [Holz et al., 1994; 
Huber et at., 1993; Jena et al., 1994; von Mollard et al., 1994a; 
Weber et al., 19941. Budding requires that a given rab associ- 
ates with a nascent vesicle as it exits the donor membrane 
compartment. At this time, binding of ATP to NSF triggers 
assembly of a fusion complex which includes SNAPs and a 
vesicular SNARE (vSNARE). The entire complex recognizes a 
SNARE on the acceptor (target) membrane (tSNARE), prompt- 
ing hydrolysis of NSF-associated ATP, with consequent vesicle- 
membrane fusion. The ADP-bound form of NSF dissociates 
from the vesicle, resulting in detachment of the other proteins 
mediating targeting/fusion. All facilitatory proteins recycle to 
the donor membrane, where they are used in another round of 
vesicle transport. 
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Fig. 3. Mechanism of rab-mediated vesicular targeting [for 
further details see Novick and Brennwald, 1993, von Mollard et 
al , 1994b] A pool of inactive CDPrabs exists in solution bound 
to CDP dissociation inhibitor (CDI) A guanidine nucleotide 
exchange factor (CEF) on the donor membrane stimulates 
release of CDP, thereby facilitating membrane attachment of 
rab CTP binding to membrane-bound rab triggers its interac- 
tion with vSNARE on the budding vesicle Docking of the vesicle 
to an acceptor membrane is mediated by events involving 
vSNARE-NSFiSNAP and rabirabphilin Hydrolysis of NSF- 
bound ATP and rab-bound CTP results in vesicle-membrane 
fusion and release of rab, NSF, and COP proteins Rab-CDP 
recycles to the inactive CDI-bound pool. 

Polarization of the osteoclast, a prerequisite 
for resorption, requires it bind to the organic 
matrix of bone. Matrix-recognizing integrins lo- 
calize in this cell to focal adhesions, subcellular 
complexes in close proximity to extracellular 
ligand [Marchisio et al., 19841. It is within these 
structures that integrins associate with a num- 
ber of intracellular proteins ultimately linking 
the heterodimers and cytoskeleton [Burridge 
and Fath, 1989; Sastry and Horwitz, 19931. We 
[Ross et al., 19931 and others [Chambers et al., 
1986; Fisher et al., 19931 have shown that the 
integrin avp3 is essential to the resorptive pro- 
cess. Moreover, this integrin, like other mem- 
bers of its family, transmits matrix-derived sig- 
nals [Guan et al., 1991; Kornberg et al., 1991; 
Leavesley et al., 1993; Juliano and Haskill, 1993; 
Fox et al., 19931 and does so in the osteoclast. 
For example, interaction of aVp3 with its bone 
matrix ligand, osteopontin, leads, in both avian 
[Miyauchi et al., 19911 and rodent osteoclasts 
[Zimolo et al., 19941, to immediate changes in 

intracellular calcium. In the case of avian cells 
the change in calcium arises via activation of a 
calmodulin-dependent plasma membrane Ca2+- 
ATPase, probably protecting osteoclasts from 
the high ambient Ca2+ to which they are ex- 
posed. Occupancy of aJ33 prompts osteoclasts to 
synthesize phosphatidylinositol triphosphate 
which binds, in turn, to gelsolin, thereby prompt- 
ing cytoskeletal reorganization, an event likely 
to play a critical role in osteoclast polarization 
[Miyauchi et al., submitted]. 

With the observations that integrins transmit 
matrix-derived signals came the search for pro- 
teins distal to the heterodimer in the signalling 
pathway. The tyrosine kinases pp60 c - ~ ' ~  and 
focal adhesion kinase may be important in this 
regard as they physically associate with inte- 
grins [Rolnick et al., 1992; Hildebrand et al., 
19931. The report that liganding of aVp3 on osteo- 
clasts induces a wave of tyrosine phosphoryla- 
tion [Neff et al., 19931 suggests these enzymes 
are activated by integrin occupancy. 

In 1991, Soriano et al. made the surprising 
observation that interruption of the c-src gene 
results in a form of osteopetrosis associated with 
abundant, yet dysfunctional, osteoclasts [Sori- 
ano et al., 19911. The precise role c-src plays in 
osteoclast function is not yet understood. How- 
ever, since pp60 c-src is associated with both 
intracellular and plasma membranes in osteo- 
clasts [Horne et al., 1992; Tanaka et al., 19921, 
and osteoclasts of c-src - / -  mice fail to form 
ruffled membranes [Soriano et al., 19911, the 
kinase may be critical to acidified vesicle polariza- 
tion. This observation, and the fact that focal 
adhesion kinase, a pp60 c - ~ ' ~  substrate, is phos- 
phorylated in vitro upon integrin occupancy 
[Burridge et al., 1992, Guan and Shalloway, 
1992; Lipfert et al., 19921, prompted Suda and 
his colleagues to block focal adhesion kinase 
expression in osteoclasts. These experiments, 
performed with antisense technology, blunted 
osteoclastic bone resorption [Tanaka et al., 
1993bl. Thus, nonreceptor tyrosine kinases, 
which impact on cytoskeletal function, appear 
central to activating osteoclasts, perhaps by in- 
ducing ruffled membrane formation. 

Given that the integrin a,p3 transmits matrix- 
derived signals, we propose that osteoclasts are 
activated upon binding of the heterodimer to its 
bone-residing ligands. Our finding that H+- 
ATPase polarization occurs in osteoclasts only 
in contact with bone [unpublished observations] 
supports this hypothesis. The scenario which 
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